<<12345>>
16.

$\cot h^{-1}(3)+ \tanh^{-1} \frac{1}{3}- cosec h^{-1} (-\sqrt{3})=$


A) $\log _{e} \left(\frac{2}{\sqrt{3}}\right)$

B) $\log _{e}2\sqrt{3}$

C) 0

D) $\log _{e}3\sqrt{3}$



17.

$\frac{d}{dx}\left(\frac{x+5}{(x+1)^{2}(x+2)}\right)=$


A) $\frac{8}{(x+2)^{2}}-\frac{3}{(x+1)^{2}}+\frac{3}{(x+1)^{3}}$

B) $\frac{3}{(x+1)^{2}}-\frac{3}{(x+2)^{2}}-\frac{8}{(x+1)^{3}}$

C) $\frac{3}{(x+2)^{2}}-\frac{3}{(x+1)^{3}}-\frac{8}{(x+1)^{2}}$

D) $\frac{8}{(x+2)^{2}}-\frac{3}{(x+1)^{3}}+\frac{3}{(x+1)^{2}}$



18.

The modulus -amplitude  form of  $\frac{(1-i)^{3}(2-i)}{(2+i)(1+i)}$  is 


A) $2cis\left( \pi-\tan^{-1}\frac{4}{3}\right)$

B) $2cis\left( -\tan^{-1}\frac{4}{3}\right)$

C) $2cis\left( -\pi+\tan^{-1}\frac{4}{3}\right)$

D) $2cis\left( \tan^{-1}\frac{4}{3}\right)$



19.

If x,y are any two  non-zero real numbers , $ a_{ij}= xi+yj, A=(a_{ij})_{n xn}$ and P.Q are two n x n  matrices such that A= xP+ yQ,  then


A) P is singular and Q is non-singular

B) P+Q is symmetric and P-Q is skew symmetric

C) Both P+Q and P-Q are singular

D) Both P+Q and P-Q are non-singular



20.

If A= $\begin{bmatrix}1 & 2&2 \\2 & 1&2\\2&2&1 \end{bmatrix}$ then $A^{-1}$=


A) 4l-A

B) A-4l

C) $\frac{1}{5}(A-4l)$

D) $\frac{1}{5}(4l-A)$



<<12345>>