Processing math: 11%




<<12345>>
16.

coth1(3)+tanh113cosech1(3)=


A) loge(23)

B) loge23

C) 0

D) loge33



17.

\frac{d}{dx}\left(\frac{x+5}{(x+1)^{2}(x+2)}\right)=


A) \frac{8}{(x+2)^{2}}-\frac{3}{(x+1)^{2}}+\frac{3}{(x+1)^{3}}

B) \frac{3}{(x+1)^{2}}-\frac{3}{(x+2)^{2}}-\frac{8}{(x+1)^{3}}

C) \frac{3}{(x+2)^{2}}-\frac{3}{(x+1)^{3}}-\frac{8}{(x+1)^{2}}

D) \frac{8}{(x+2)^{2}}-\frac{3}{(x+1)^{3}}+\frac{3}{(x+1)^{2}}



18.

The modulus -amplitude  form of  \frac{(1-i)^{3}(2-i)}{(2+i)(1+i)}  is 


A) 2cis\left( \pi-\tan^{-1}\frac{4}{3}\right)

B) 2cis\left( -\tan^{-1}\frac{4}{3}\right)

C) 2cis\left( -\pi+\tan^{-1}\frac{4}{3}\right)

D) 2cis\left( \tan^{-1}\frac{4}{3}\right)



19.

If x,y are any two  non-zero real numbers , a_{ij}= xi+yj, A=(a_{ij})_{n xn} and P.Q are two n x n  matrices such that A= xP+ yQ,  then


A) P is singular and Q is non-singular

B) P+Q is symmetric and P-Q is skew symmetric

C) Both P+Q and P-Q are singular

D) Both P+Q and P-Q are non-singular



20.

If A= \begin{bmatrix}1 & 2&2 \\2 & 1&2\\2&2&1 \end{bmatrix} then A^{-1}=


A) 4l-A

B) A-4l

C) \frac{1}{5}(A-4l)

D) \frac{1}{5}(4l-A)



<<12345>>